A duality theoretic view on limits of finite structures: Extended version
نویسندگان
چکیده
A systematic theory of structural limits for finite models has been developed by Nesetril and Ossona de Mendez. It is based on the insight that collection structures can be embedded, via a map they call Stone pairing, in space measures, where desired computed. We show closely related but finer grained (finitely additive) measures arises -- Stone-Priestley duality notion types from model enriching expressive power first-order logic with certain "probabilistic operators". provide sound complete calculus this extended expose functorial nature construction. The consequences are two-fold. On one hand, we identify logical gist limits. other our construction shows theoretic variant pairing captures adding layer quantifiers, thus making strong link to recent work semiring quantifiers words. In process, as unifying concept behind link. These results contribute bridging strands computer science which focus semantics more algorithmic complexity areas, respectively.
منابع مشابه
A Finite-Model-Theoretic View on Propositional Proof Complexity
We establish new, and surprisingly tight, connections between propositional proof complexity and finite model theory. Specifically, we show that the power of several propositional proof systems, such as Horn resolution, bounded-width resolution, and the polynomial calculus of bounded degree, can be characterised in a precise sense by variants of fixed-point logics that are of fundamental import...
متن کاملA Proof - Theoretic Foundation of Abortive Continuations ( Extended version )
We give an analysis of various classical axioms and characterize a notion of minimal classical logic that enforces Peirce’s law without enforcing Ex Falso Quodlibet. We show that a “natural” implementation of this logic is Parigot’s classical natural deduction. We then move on to the computational side and emphasize that Parigot’s λμ corresponds to minimal classical logic. A continuation consta...
متن کاملNear-Unanimity Polymorphisms on Structures with Finite Duality
We introduce a combinatorial parameter on finite relational trees which measures the smallest possible arity of a near-unanimity polymorphism on a core structure with finite duality.
متن کاملA Heuristic Method on Extended Two-Stage Network Structures
Data Envelopment Analysis (DEA) as a non–parametric method is used to measure relative performance of organizational units. The aim of this paper is to develop a new model to evaluate the efficiency of a general two-stage network structures proposed by Li et al. (2012) for measuring the performance of Decision Making Units (DMUs). In addition, this paper expands the work of Li et al. (2012) an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Logical Methods in Computer Science
سال: 2022
ISSN: ['1860-5974']
DOI: https://doi.org/10.46298/lmcs-18(1:16)2022